
I n t r o d u c t i o n t o O O P w i t h C + +

CH
C H A P T E R 3

N u m e r i c a l D a t a

In this chapter you will learn about

• Constants and variables

• Integers

• GUI Object IntTypeIn

• Real numbers

• GUI Object FloatTypeIn
C. Thomas Wu
© All Rights Reserved 1998

1 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s
Constant and Variable

• The simplest kind of data used in a computer program is a
constant, which is a data value that remains unchanged.

• One kind of constant data we have seen in the sample program
is a literal constant. Let’s look again at the sample program that
draws a square.

// Program Square: A program that draws a square.

#include "Turtles.h"

void main ()

{

Turtle myTurtle;

myTurtle.Init(260,180); // Start from location 260,180.

 myTurtle.Move(50); // Draw the bottom of the square.

 myTurtle.Turn(90); // Turn to draw the right side.

 myTurtle.Move(50); // Draw the right side.

 myTurtle.Turn(90); // Turn to draw the top.

 myTurtle.Move(50); // Draw the top.

 myTurtle.Turn(90); // Turn to draw the left side.

 myTurtle.Move(50); // Draw the left side.

 myTurtle.Done();

}

C. Thomas Wu
© All Rights Reserved 1998

2 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

y
e

e
• The numeric arguments such as 260, 180, 50, and 90 are literal
constants (to be precise, they are literal integer constants). The
are constants because their values do not change, and they ar
literal because we “literally” specify their constant data values
instead of using some kinds of identifiers.

• Porgram Square always draws a square 50 pixels in size. If w
to draw squares of different sizes, we can use a named, or
symbolic, constant. Here’s the modified program with a named
constant.

// Program Square4: A program that draws a square

// whose side has the length of size .

#include "Turtles.h"

void main ()

{

const int size = 50;// Use the named constant size.

Turtle myTurtle;

myTurtle.Init(260,180); // Start from location 260,180.

 myTurtle.Move(size); // Draw the bottom of the square.

 myTurtle.Turn(90); // Turn to draw the right side.

 myTurtle.Move(size); // Draw the right side.

 myTurtle.Turn(90); // Turn to draw the top.

 myTurtle.Move(size); // Draw the top.

 myTurtle.Turn(90); // Turn to draw the left side.

 myTurtle.Move(size); // Draw the left side.

 myTurtle.Done();

}

C. Thomas Wu
© All Rights Reserved 1998

3 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

l,
• The statement
 const int size = 50;

declares that size is an integer constant whose value is 50.
Notice the reserved words const and int for declaring a
constant data value of type integer.

• The named constant size is used in four different places in the
program. By using this named constant, whenever we want to
run the program again with another value for the size of a
square, the only statement we have to modify is the constant
declaration statement.

• Although the use of a named constant improved the situation
somewhat, drawing many squares with different size is still a
chore. Imagine trying out squares of different sizes until you
find the one you like. You may end up going through the edit-
compile-run cycle 20 or 30 times.

• A program that requires us to edit and compile again for each
new value is not very useful. To make the program more usefu
we need an input statement that gets a value for the size of a
square.

• Here is an improved program that uses a new GUIobject called

IntTypeIn for getting a value.
C. Thomas Wu
© All Rights Reserved 1998

4 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
// Program AnySquare: A program that draws a square of

// any size.

#include "Turtles.h"

#include "GUIObj.h"

void main ()

{

int size;

 IntTypeIn inputBox;// object for getting input

Turtle myTurtle;

myTurtle.Init(260,180); // Start from location 260,180.

//Get the square size from the user.

size = inputBox.GetInt("Square Size",
"Enter the square size");

 myTurtle.Move(size); // Draw the bottom of the square.

 myTurtle.Turn(90); // Turn to draw the right side.

 myTurtle.Move(size); // Draw the right side.

 myTurtle.Turn(90); // Turn to draw the top.

 myTurtle.Move(size); // Draw the top.

 myTurtle.Turn(90); // Turn to draw the left side.

 myTurtle.Move(size); // Draw the left side.

 myTurtle.Done();

}

C. Thomas Wu
© All Rights Reserved 1998

5 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
• Here is the object diagram for the above program.

• The identifier size is not a constant anymore; now it is a
variable. The declaration statement

int size;

declares that size is the name for a variable of type int
(integer).

• Instead of saying “a size is the name for a variable of integer
type,” we say “a size is an integer variable.”

• A variable is very similar to a constant in many ways (notice
that the calls to the Move functions are the same in both
programs) except for one big difference.

main

myTurtle

inputBox
C. Thomas Wu
© All Rights Reserved 1998

6 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
• A constant value remains fixed, but a value assigned to a
variable can vary, thus the name variable. A value assigned to a
variable can be of any value of a declared type. In the above
program, for example, the identifier size is declared to be an
integer variable.

• Every time the AnySquare program is executed, it gets a new
value from the user via the IntTypeIn object inputBox . When
the function GetInt of inputBox is invoked by the statement

inputBox.GetInt("Square Size", "Enter the square size");

the following message box appears on the screen.
C. Thomas Wu
© All Rights Reserved 1998

7 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

• The following diagram summarizes how the GetInt function
works.

• When you click the Cancel button, the entered value is erased
and inputBox remains on the screen. When you enter invalid
data (a noninteger value or no value at all) and click the OK
button, an error message is displayed. Again, inputBox remains
on the screen. The only way to close an IntTypeIn object, that is,
to make it disappear from the screen, is to enter a correct value
and click the OK button.

• A C++ function is very much like an ordinary mathematical
function because it returns the result from a given number of
arguments. However, a C++ function is not limited to returning
numerical values—it can return any valid C++ data value,
including objects. A C++ function does not even have to return a
value.

• An integer value entered by the user is assigned to the variable

size , and then, this value is passed to the function Move in the
statement

 myTurtle.Move(size)

size = inputBox.GetInt("Square Size", "Enter the square size")
C. Thomas Wu
© All Rights Reserved 1998

8 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s

.

• If the user enters 10 and clicks the OK button, the square would
be

• If the number 150 is entered instead, then the square would be

• By incorporating an input routine and using a variable, we made
a significant improvement to the program. With this improved
program, we do not have to modify the program to draw square
of different sizes. Editing and compiling the program for each
new value of a square size is not necessary any more. We only
need to execute the program to draw a square of different size
C. Thomas Wu
© All Rights Reserved 1998

9 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

Integers

• We declare a variable by designating its name (identifier) and
type, and we declare a constant by designating its name, type,
and value. In declaring a variable, we can also assign an initial
value to it.

• Let’s look at examples.

int x = 435;

const int v = 123;

long y = 25310, z, w;

The first declaration declares the identifier x as an integer
variable with the initial value of 435 . Since x is a variable, its
value can change later in the program.

The second declaration declares the identifier v as an integer
constant whose value is 123 .

The last declaration declares three integer variables y, z , and w.
The variable y is also initialized to the value 25310 . The type long
(or equivalently long int) is used to represent a larger integer
value.
C. Thomas Wu
© All Rights Reserved 1998

10 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

a
e

• The following table describes the various data types for storing
integers.

• The following example illustrates an arithmetic computation
involving integer values. Suppose we want to draw a square of
given size and position it at the center of a window. To do so, th
program must first move the turtle to the correct position before
drawing the square as shown in the illustration below.

Data Type Explanation

int An integer value ranging from
-32,768 to 32,767. Uses 2
bytes.

short Shorthand for short int. Nor-
mally equivalent to int, but it
could be different depending
on the actual C++ compiler.

long Shorthand for long int. An
integer value ranging from -
2,147,483,648 to
2,147,483,647. Uses 4 bytes.

(306,216)

1/2 size

1/2 size

size

(306 - 1/2 size, 216 + 1/2 size)
C. Thomas Wu
© All Rights Reserved 1998

11 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
• The following program draws a square at the center of the
window using the above expression.

// Program AnySquare2: A program that draws a square of any

// size at the center of the window.

#include "Turtles.h"

#include "GUIObj.h"

void main ()

{

int size; // size of a square

 IntTypeIn inputBox;

Turtle myTurtle;

//Get the size from the user

size = inputBox.GetInt("Square Size",

"Enter the square size");

 myTurtle.Init(306 - size/2, 216 + size/2);

 // Initialize a turtle to correct

// starting point so the square is centered.

myTurtle.Move(size); // Draw the bottom of the square.

 myTurtle.Turn(90); // Turn to draw the right side.

 myTurtle.Move(size); // Draw the right side.

 myTurtle.Turn(90); // Turn to draw the top.

 myTurtle.Move(size); // Draw the top.

 myTurtle.Turn(90); // Turn to draw the left side.

 myTurtle.Move(size); // Draw the left side.

 myTurtle.Done();

}

C. Thomas Wu
© All Rights Reserved 1998

12 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

n
• The C++ arithmetic operators for integer operands are shown i
the following table. The examples assume that x and y are
integer variables with values 10 and 3, respectively.

Operator Description
Example

Expression
Expression

Value
(x=10; y=3)

+ addition x + y 13

- subtraction x - y 7

* multiplication x * y 30

/ quotient division (inte-
ger)

x / y 3

% modulo division --
remainder after division

x % y 1

- unary minus - y - 3

+ unary plus + y 3

inputBox

myTurtle

AnySquare2

size

The variable is list-
ed inside the rect-
angle
C. Thomas Wu
© All Rights Reserved 1998

13 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

d

,

ve
• The rules to combine operators and operands to formulate vali
C++ arithmetic expressions (limited to integer operands) are

• Operands may be integer constants (e.g., 12 , 77 , 1),
integer variables (e.g., i , size , n) or other arithmetic
expressions possibly enclosed in parentheses (e.g.
(size + 5) , (n − 2)).

• Each binary operator (=, −, * , / , %) must have an
operand on either side. It is called a binary operator
because it requires two operands.

• A unary operator must have an operand to its right.
Thus −3 is a valid arithmetic expression but 3 − is not.

• Parentheses must match—left parentheses must ha
matching right parentheses. For example, (3 + 5) is
valid while (3 + (5 − 3) is not.

• C++ uses an assignment operator for assigning a value to a
variable. The equal symbol is used for an assigment operator,
and the general format is

variable = value

where value is any expression that results in a value when
evaluated. Here are some examples:

x = 2;

y = x + 3;

z = x * y - 4;
C. Thomas Wu
© All Rights Reserved 1998

14 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
When the three statements are executed, the variables x , y , and z
will have values 2 , 5, and 6 , respectively.

• If we want to set the variables x, y, and z to 5, instead of stating

x = 5;

y = 5;

z = 5;

we could state
z = y = x = 5;

• This is how we interpret cascaded assignment operators:

y = x = 5
This expression is evaluated
first, which results in value 5
with a side effect of assigning
the value to x.

y = 5

5

The final result

Side effect: Value 5 is assigned to x and y

This expresssion is evaluated
next, which results in value 5
with a side effect of assigning
the value to y.

1

2

C. Thomas Wu
© All Rights Reserved 1998

15 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

e
d.

ated
ated.

re
e

• When an arithmetic expression has more than one operator, th
result depends on the order in which the operators are evaluate
For example, the expression

5 + 2 * 4

could be evaluated to 28 or to 13, depending on whether the
addition or the multiplication is performed first.

• C++ defines an operator precedence, which determines the
order of evaluating expressions, so an expression is evaluated
precisely in one way.

• C++ follows these operator precedence:

• Subexpressions enclosed in parentheses are evalu
before operators outside the parentheses are evalu

• The operators are grouped into five categories. The
highest category contains the unary operators. The
second category has multiplicative operators (* , / , and
%), the third category has additive operators (+ and -),
and the last category has assignment operators.
Operators in the higher categories are applied befo
those in a lower category unless parentheses dictat
otherwise (see rule 1).

• In the absence of parentheses, if two operators are
from the same category, then the operators are
evaluated left to right except for the assignment and
unary operators, which are evaluated right to left.
C. Thomas Wu
© All Rights Reserved 1998

16 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

 on
r of
• The following example illustrates the precedence rules.

• We must know the precedence rules in order to read other
programmers’ code. However, when we write an arithmetic
expression ourselves, we should use parentheses and not rely
the precedence rules. The use of parentheses makes the orde
evaluation explicit, so it eliminates the needs to remember the
precedence rules in detail.

 10

 5 + 5

 8 - 3 + 100 div (34 - 2 * (5 + 2))

 8 - 3 + 100 div (34 - 2 * 7)

 8 - 3 + 100 div (34 - 14)

 8 - 3 + 100 div 20

rule 1

rules 1 and 2

 8 - 3 + 5

rule 1

rule 2

rule 3

rule 3

/

/

/

/

C. Thomas Wu
© All Rights Reserved 1998

17 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
Sample Programs Using Integers

• Let’s write a program that draws an equilateral parallelogram
given values for the length of the sides and the angle between
the base and the right side.

// Program Parallelogram: A program that draws a

// parallelogram of length and angle .

#include "Turtles.h"

#include "GUIObj.h"

void main ()

{

int length, angle;

 IntTypeIn inputBox;

Turtle myTurtle;

myTurtle.Init(306,216); // Start from the center.

//Input the data from the user

length = inputBox.GetInt("Length", "Enter the length");

angle = inputBox.GetInt("Angle", "Enter the angle");

length

length

angle
C. Thomas Wu
© All Rights Reserved 1998

18 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
 myTurtle.Move(length); // Draw the bottom.

 myTurtle.Turn(180 - angle); // Turn to draw the right side.

 myTurtle.Move(length); // Draw the right side.

 myTurtle.Turn(angle); // Turn to draw the top.

 myTurtle.Move(length); // Draw the top.

 myTurtle.Turn(180 - angle); // Turn to draw the left side.

 myTurtle.Move(length); // Draw the left side.

 myTurtle.Done();

}

inputBox

Parallelogram

size

angle

myTurtle
C. Thomas Wu
© All Rights Reserved 1998

19 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
• The next sample program will draw a plus sign of any size.
We’ll assume that the width of each of the four legs of the plus
sign should be one-fifth of the height. Therefore the length of
each leg would be two-fifths of the height.

// Program PlusSign: A program that draws a plus sign.

#include "Turtles.h"

#include "GUIObj.h"

void main ()

{

int height, leg_length, leg_width;

 IntTypeIn inputBox;

Turtle myTurtle;

myTurtle.Init(306,216); //starting point

//Get values from the user.

height = inputBox.GetInt("Length","Enter the height");

leg_width = height / 5;

leg_length = 2 * leg_width;

 myTurtle.Move(leg_width); // End of bottom leg

 myTurtle.Turn(90);

h

2h
5

h
5

C. Thomas Wu
© All Rights Reserved 1998

20 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
 myTurtle.Move(leg_length); // Right side of bottom leg

myTurtle.Turn(-90);

myTurtle.Move(leg_length); // Bottom of right leg

myTurtle.Turn(90);

myTurtle.Move(leg_width); // End of right leg

myTurtle.Turn(90);

myTurtle.Move(leg_length); //Top of right leg

myTurtle.Turn(-90);

myTurtle.Move(leg_length); //Right side of top leg

myTurtle.Turn(90);

myTurtle.Move(leg_width); //End of top leg

myTurtle.Turn(90);

myTurtle.Move(leg_length); //Left side of top leg

myTurtle.Turn(-90);

myTurtle.Move(leg_length); //Top of left leg

myTurtle.Turn(90);

myTurtle.Move(leg_width); //End of left leg

myTurtle.Turn(90);

myTurtle.Move(leg_length); //Bottom of left leg

myTurtle.Turn(-90);
C. Thomas Wu
© All Rights Reserved 1998

21 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH
myTurtle.Move(leg_length); //Left side of bottom leg

myTurtle.Turn(90);

 myTurtle.Done();

}

inputBox

PlusSign

leg_width

leg_length

myTurtle

height
C. Thomas Wu
© All Rights Reserved 1998

22 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

is

is
s
Real Numbers

• In C++, we have data types float , double , and long double
for representing real numbers. The word float is derived from
the way the real numbers are stored in a computer, that is, as a
floating-point representation.

• The actual number of bytes used for representing different
precisions depends on the computer or compiler being used. It
typically 4 bytes for float , 8 bytes for double , and 10 bytes for

long double . The following describes the three data types for
representing real numbers. Notice that the table lists the
information most representative of all compilers; your compiler
may have slightly different precisions.

• The result of division between two integers is integer (with a
fractional part truncated; e.g. 6 / 4 is 1), and the result of division
between two real numbers is real (e.g., 6.0 / 4.0 is 1.5).

• What about a case when one of the operands is an integer and
another a real? The result is a real. In other words, the integer
first converted to a real and then the operation is carried. This i
because the float has a higher precision than an int :

Data Type Explanation

float A real value with 7-digit precision ranging from
3.4 × 10-38 to 3.4 × 1038. Uses 4 bytes.

double A real value with 15-digit precision ranging
from 1.7 × 10-308 to 1.7 × 10308. Uses 8 bytes.

long double A real value with 19-digit precision ranging
from 3.4 × 10-4932 to 1.1 × 104932. Uses 10
bytes.
C. Thomas Wu
© All Rights Reserved 1998

23 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

f
converting an int to a float will not result in any loss of data,
but converting a float to an int could.

• The following statements cause the variable y to hold a float
value 1.5 .

int i = 6;

float x = 4.0, y;

y = i / x;

• An arithmetic expression that contains different data types is
called amixed-mode expression. The mixed-mode expression is
evaluated by converting the data types of operands so the
operations are carried out between the same data types.

• In mixed-mode expressions, a lower-precision data value is
converted to the next higher precision data type. The ranking o
data types from high to low is long double , double , float ,
long int , int , and short .

int i;
float f;
double d;

(i / 5) + (f + i) - (d * i)

double

double

float

floatint
C. Thomas Wu
© All Rights Reserved 1998

24 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

A Sample Program Using Real Numbers

• As an illustration of using real numbers, we will write a program
to solve quadratic equations of the form

where the coefficients A, B, and C are real numbers. The two
solutions are derived by the formula

• We assume that

is true, so there will be either one or two real number solutions
for x . Here is the program.

//Program Quad: Find the two solutions for the quadratic

// equation Ax 2 + Bx + C = 0.

#include "GUIObj.h"

#include "math.h"

void main ()

{

Ax
2

Bx C+ + 0=

x B– B
2

4AC–±
2A

--=

B
2

4AC≥
C. Thomas Wu
© All Rights Reserved 1998

25 of 26 3 Numerical Data

I n t r o d u c t i o n t o O O P w i t h C + +

CH

s
float A, B, C, x1, x2, sqrtOfDiscriminant;

FloatTypeInfloatInpBox;

OKBox msgBox;

//get three inputs

A = floatInpBox.GetFloat("INPUT","Type in value for A");

B = floatInpBox.GetFloat("INPUT","Type in value for B");

C = floatInpBox.GetFloat("INPUT","Type in value for C");

//compute the sqrt of a discriminant and two solutions

sqrtOfDiscriminant = sqrt(B*B - 4*A*C);

x1 = (-B + sqrtOfDiscriminant) / (2 * A);

x2 = (-B - sqrtOfDiscriminant) / (2 * A);

//display the results

msgBox.Display(x1);

msgBox.Display(x2);

}

• The program uses one new GUI object FloatTypeIn for
inputting values of float data type. The function to accept an
input value is GetFloat , whose functionality is analogous to the

GetInt function of IntTypeIn . The only difference is whether
an input value is an integer or a real number. For both function
the first argument is the title of the input box, and the second
argument is the prompt inside the input box.

• The function sqrt , which is used to compute the discriminant, is
a compiler-supplied function defined in the header file math.h .
C. Thomas Wu
© All Rights Reserved 1998

26 of 26 3 Numerical Data

	CHAPTER 3 Numerical Data
	In this chapter you will learn about
	• Constants and variables
	• Integers
	• GUI Object IntTypeIn
	• Real numbers
	• GUI Object FloatTypeIn

	Constant and Variable
	• The simplest kind of data used in a computer program is a constant, which is a data value that ...
	• One kind of constant data we have seen in the sample programs is a literal constant. Let’s look...
	// Program Square: A program that draws a square.
	#include "Turtles.h"
	void main ()
	{
	Turtle myTurtle;
	myTurtle.Init(260,180); // Start from location 260,180.
	myTurtle.Move(50); // Draw the bottom of the square.
	myTurtle.Turn(90); // Turn to draw the right side.
	myTurtle.Move(50); // Draw the right side.
	myTurtle.Turn(90); // Turn to draw the top.
	myTurtle.Move(50); // Draw the top.
	myTurtle.Turn(90); // Turn to draw the left side.
	myTurtle.Move(50); // Draw the left side.
	myTurtle.Done();
	}

	• The numeric arguments such as 260, 180, 50, and 90 are literal constants (to be precise, they a...
	• Porgram Square always draws a square 50 pixels in size. If we to draw squares of different size...
	// Program Square4: A program that draws a square
	// whose side has the length of size.
	#include "Turtles.h"
	void main ()
	{
	const int size = 50; // Use the named constant size.
	Turtle myTurtle;
	myTurtle.Init(260,180); // Start from location 260,180.
	myTurtle.Move(size); // Draw the bottom of the square.
	myTurtle.Turn(90); // Turn to draw the right side.
	myTurtle.Move(size); // Draw the right side.
	myTurtle.Turn(90); // Turn to draw the top.
	myTurtle.Move(size); // Draw the top.
	myTurtle.Turn(90); // Turn to draw the left side.
	myTurtle.Move(size); // Draw the left side.
	myTurtle.Done();
	}

	• The statement
	const int size = 50;

	declares that size is an integer constant whose value is 50. Notice the reserved words const and ...
	• The named constant size is used in four different places in the program. By using this named co...
	• Although the use of a named constant improved the situation somewhat, drawing many squares with...
	• A program that requires us to edit and compile again for each new value is not very useful. To ...
	• Here is an improved program that uses a new GUIobject called IntTypeIn for getting a value.
	// Program AnySquare: A program that draws a square of
	// any size.
	#include "Turtles.h"
	#include "GUIObj.h"
	void main ()
	{
	int size;
	IntTypeIn inputBox; // object for getting input
	Turtle myTurtle;
	myTurtle.Init(260,180); // Start from location 260,180.
	//Get the square size from the user.
	size = inputBox.GetInt("Square Size", "Enter the square size");
	myTurtle.Move(size); // Draw the bottom of the square.
	myTurtle.Turn(90); // Turn to draw the right side.
	myTurtle.Move(size); // Draw the right side.
	myTurtle.Turn(90); // Turn to draw the top.
	myTurtle.Move(size); // Draw the top.
	myTurtle.Turn(90); // Turn to draw the left side.
	myTurtle.Move(size); // Draw the left side.
	myTurtle.Done();
	}

	• Here is the object diagram for the above program.
	• The identifier size is not a constant anymore; now it is a variable. The declaration statement
	int size;

	declares that size is the name for a variable of type int (integer).
	• Instead of saying “a size is the name for a variable of integer type,” we say “a size is an int...
	• A variable is very similar to a constant in many ways (notice that the calls to the Move functi...
	• A constant value remains fixed, but a value assigned to a variable can vary, thus the name vari...
	• Every time the AnySquare program is executed, it gets a new value from the user via the IntType...
	inputBox.GetInt("Square Size", "Enter the square size");

	the following message box appears on the screen.
	• The following diagram summarizes how the GetInt function works.
	• When you click the Cancel button, the entered value is erased and inputBox remains on the scree...
	• A C++ function is very much like an ordinary mathematical function because it returns the resul...
	• An integer value entered by the user is assigned to the variable size, and then, this value is ...
	myTurtle.Move(size)

	• If the user enters 10 and clicks the OK button, the square would be
	• If the number 150 is entered instead, then the square would be
	• By incorporating an input routine and using a variable, we made a significant improvement to th...
	Integers
	• We declare a variable by designating its name (identifier) and type, and we declare a constant ...
	• Let’s look at examples.
	int x = 435;
	const int v = 123;
	long y = 25310, z, w;

	The first declaration declares the identifier x as an integer variable with the initial value of ...
	The second declaration declares the identifier v as an integer constant whose value is 123.
	The last declaration declares three integer variables y, z, and w. The variable y is also initial...
	• The following table describes the various data types for storing integers.
	int
	An integer value ranging from -32,768 to 32,767. Uses 2 bytes.
	short
	Shorthand for short int. Normally equivalent to int, but it could be different depending on the a...
	long
	Shorthand for long int. An integer value ranging from - 2,147,483,648 to 2,147,483,647. Uses 4 by...

	• The following example illustrates an arithmetic computation involving integer values. Suppose w...
	• The following program draws a square at the center of the window using the above expression.
	// Program AnySquare2: A program that draws a square of any
	// size at the center of the window.
	#include "Turtles.h"
	#include "GUIObj.h"
	void main ()
	{
	int size; // size of a square
	IntTypeIn inputBox;
	Turtle myTurtle;
	//Get the size from the user
	size = inputBox.GetInt("Square Size",
	"Enter the square size");
	myTurtle.Init(306 - size/2, 216 + size/2);
	// Initialize a turtle to correct
	// starting point so the square is centered.
	myTurtle.Move(size); // Draw the bottom of the square.
	myTurtle.Turn(90); // Turn to draw the right side.
	myTurtle.Move(size); // Draw the right side.
	myTurtle.Turn(90); // Turn to draw the top.
	myTurtle.Move(size); // Draw the top.
	myTurtle.Turn(90); // Turn to draw the left side.
	myTurtle.Move(size); // Draw the left side.
	myTurtle.Done();
	}

	• The C++ arithmetic operators for integer operands are shown in the following table. The example...
	+
	addition
	x + y
	13
	-
	subtraction
	x - y
	7
	*
	multiplication
	x * y
	30
	/
	quotient division (integer)
	x / y
	3
	%
	modulo division -- remainder after division
	x % y
	1
	-
	unary minus
	- y
	- 3
	+
	unary plus
	+ y
	3

	• The rules to combine operators and operands to formulate valid C++ arithmetic expressions (limi...
	• Operands may be integer constants (e.g., 12, 77, 1), integer variables (e.g., i, size, n) or ot...
	• Each binary operator (=, -, *, /, %) must have an operand on either side. It is called a binary...
	• A unary operator must have an operand to its right. Thus -3 is a valid arithmetic expression bu...
	• Parentheses must match—left parentheses must have matching right parentheses. For example, (3 +...

	• C++ uses an assignment operator for assigning a value to a variable. The equal symbol is used f...
	variable = value

	where value is any expression that results in a value when evaluated. Here are some examples:
	x = 2;
	y = x + 3;
	z = x * y - 4;

	When the three statements are executed, the variables x, y, and z will have values 2, 5, and 6, r...
	• If we want to set the variables x, y, and z to 5, instead of stating
	x = 5;
	y = 5;
	z = 5;

	we could state
	z = y = x = 5;

	• This is how we interpret cascaded assignment operators:
	• When an arithmetic expression has more than one operator, the result depends on the order in wh...
	5 + 2 * 4

	could be evaluated to 28 or to 13, depending on whether the addition or the multiplication is per...
	• C++ defines an operator precedence, which determines the order of evaluating expressions, so an...
	• C++ follows these operator precedence:
	• Subexpressions enclosed in parentheses are evaluated before operators outside the parentheses a...
	• The operators are grouped into five categories. The highest category contains the unary operato...
	• In the absence of parentheses, if two operators are from the same category, then the operators ...

	• The following example illustrates the precedence rules.
	• We must know the precedence rules in order to read other programmers’ code. However, when we wr...

	Sample Programs Using Integers
	• Let’s write a program that draws an equilateral parallelogram given values for the length of th...
	// Program Parallelogram: A program that draws a
	// parallelogram of length and angle.
	#include "Turtles.h"
	#include "GUIObj.h"
	void main ()
	{
	int length, angle;
	IntTypeIn inputBox;
	Turtle myTurtle;
	myTurtle.Init(306,216); // Start from the center.
	//Input the data from the user
	length = inputBox.GetInt("Length", "Enter the length");
	angle = inputBox.GetInt("Angle", "Enter the angle");
	myTurtle.Move(length); // Draw the bottom.
	myTurtle.Turn(180 - angle); // Turn to draw the right side.
	myTurtle.Move(length); // Draw the right side.
	myTurtle.Turn(angle); // Turn to draw the top.
	myTurtle.Move(length); // Draw the top.
	myTurtle.Turn(180 - angle); // Turn to draw the left side.
	myTurtle.Move(length); // Draw the left side.
	myTurtle.Done();
	}

	• The next sample program will draw a plus sign of any size. We’ll assume that the width of each ...
	// Program PlusSign: A program that draws a plus sign.
	#include "Turtles.h"
	#include "GUIObj.h"
	void main ()
	{
	int height, leg_length, leg_width;
	IntTypeIn inputBox;
	Turtle myTurtle;
	myTurtle.Init(306,216); //starting point
	//Get values from the user.
	height = inputBox.GetInt("Length","Enter the height");
	leg_width = height / 5;
	leg_length = 2 * leg_width;
	myTurtle.Move(leg_width); // End of bottom leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_length); // Right side of bottom leg
	myTurtle.Turn(-90);
	myTurtle.Move(leg_length); // Bottom of right leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_width); // End of right leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_length); //Top of right leg
	myTurtle.Turn(-90);
	myTurtle.Move(leg_length); //Right side of top leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_width); //End of top leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_length); //Left side of top leg
	myTurtle.Turn(-90);
	myTurtle.Move(leg_length); //Top of left leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_width); //End of left leg
	myTurtle.Turn(90);
	myTurtle.Move(leg_length); //Bottom of left leg
	myTurtle.Turn(-90);
	myTurtle.Move(leg_length); //Left side of bottom leg
	myTurtle.Turn(90);
	myTurtle.Done();
	}

	Real Numbers
	• In C++, we have data types float, double, and long double for representing real numbers. The wo...
	• The actual number of bytes used for representing different precisions depends on the computer o...
	float
	A real value with 7-digit precision ranging from 3.4 ¥ 10-38 to 3.4 ¥ 1038. Uses 4 bytes.
	double
	A real value with 15-digit precision ranging from 1.7 ¥ 10-308 to 1.7 ¥ 10308. Uses 8 bytes.
	long double
	A real value with 19-digit precision ranging from 3.4 ¥ 10-4932 to 1.1 ¥ 104932. Uses 10 bytes.

	• The result of division between two integers is integer (with a fractional part truncated; e.g. ...
	• What about a case when one of the operands is an integer and another a real? The result is a re...
	• The following statements cause the variable y to hold a float value 1.5.
	int i = 6;
	float x = 4.0, y;
	y = i / x;

	• An arithmetic expression that contains different data types is called amixed-mode expression. T...
	• In mixed-mode expressions, a lower-precision data value is converted to the next higher precisi...
	float f;
	double d;
	(i / 5) + (f + i) - (d * i)

	A Sample Program Using Real Numbers
	• As an illustration of using real numbers, we will write a program to solve quadratic equations ...
	where the coefficients A, B, and C are real numbers. The two solutions are derived by the formula
	• We assume that
	is true, so there will be either one or two real number solutions for x. Here is the program.
	//Program Quad: Find the two solutions for the quadratic
	// equation Ax2 + Bx + C = 0.
	#include "GUIObj.h"
	#include "math.h"
	void main ()
	{
	float A, B, C, x1, x2, sqrtOfDiscriminant;
	FloatTypeIn floatInpBox;
	OKBox msgBox;
	//get three inputs
	A = floatInpBox.GetFloat("INPUT","Type in value for A");
	B = floatInpBox.GetFloat("INPUT","Type in value for B");
	C = floatInpBox.GetFloat("INPUT","Type in value for C");
	//compute the sqrt of a discriminant and two solutions
	sqrtOfDiscriminant = sqrt(B*B - 4*A*C);
	x1 = (-B + sqrtOfDiscriminant) / (2 * A);
	x2 = (-B - sqrtOfDiscriminant) / (2 * A);
	//display the results
	msgBox.Display(x1);
	msgBox.Display(x2);
	}

	• The program uses one new GUI object FloatTypeIn for inputting values of float data type. The fu...
	• The function sqrt, which is used to compute the discriminant, is a compiler-supplied function d...

